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Fig. 1. Neural implicit reduced fluid simulation (NIRFS) performs high-fidelity fluid simulation orders of magnitude faster than conventional full-order
methods. An initial condition encoder (ICE) maps a novel physical initial condition, e.g., droplet position 𝒙 and velocity 𝒗, to a latent initial condition (𝒒0, 𝒑0 )
(a). In a physically structured latent space, a damped Hamiltonian neural ODE (DHNODE) is integrated (b), generating a latent fluid trajectory (c). From
the latent geometry vectors 𝒒 in the trajectory, an implicit neural representation (INR) decoder constructs fluid geometries with fine details (a and d) and
high-frequency structures (e top). The correct steady state is stably reached in the end (e bottom).

High-fidelity simulation of fluid dynamics is challenging because of the
high dimensional state data needed to capture fine details and the large
computational cost associated with advancing the system in time.We present
neural implicit reduced fluid simulation (NIRFS), a reduced fluid simulation
technique that combines an implicit neural representation of fluid shapes
and a neural ordinary differential equation to model the dynamics of fluid in
the reduced latent space. The latent trajectories are computed at very little
cost in comparison to simulations for training, while preserving fine physical
details. We show that this approach can work well, capturing the shapes
and dynamics involved in a variety of scenarios with constrained initial
conditions, e.g., droplet-droplet collisions, crown splashes, and fluid slosh in a
container. In each scenario, we learn the latent implicit representation of fluid
shapes with a deep-network signed distance function, as well as the energy
function and parameters of a damped Hamiltonian system, which helps
guarantee desirable properties of the latent dynamics. To ensure that latent
shape representations form smooth and physically meaningful trajectories,
we simultaneously learn the latent representation and dynamics.We evaluate
novel simulations for conservation of volume and momentum conservation,
discuss design decisions, and demonstrate an application of our method to
fluid control.
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1 INTRODUCTION
Reduced-order neural physics offers a change of perspective to phys-
ical simulations that would otherwise be based on high-dimensional
discretized partial differential equations (PDEs). On one hand, for an
𝑛-dimensional problem, spatial discretization transforms a continu-
ous spatial field, e.g., velocity, pressure, and density, to a 𝑃-resolution
mesh, grid, or point cloud, yielding a (𝑃 · 𝑛)-dimensional matrix.
Memory and computation cost become intractable as 𝑃 grows large
[Museth 2013]. In fluid simulations, one can have undesirably small
time steps imposed for stability, or errors from numerical dissipa-
tion [Fedkiw et al. 2001], viscosity [Roache 1998], and diffusion
[Lantz 1971]. On the other hand, within a subspace such as a fluid
phenomenon, an implicit neural representation (INR) can represent
continuous spatial fields and connect to a latent space that permits
dynamics in potentially simpler forms than the PDEs. An INR is
parameterized with a latent vector and permits continuous queries
for any point within the field. INRs have been proven invaluable to
visual computing for their adaptive and differentiable data repre-
sentation, low memory footprint, and arbitrary resolution.
The latent spaces of INRs, however, have lacked structure and

interpretability. While black box neural networks, such as long
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short-term memories (LSTMs) [Vlachas et al. 2018; Wiewel et al.
2019] and graph neural networks (GNNs) [Pfaff et al. 2021], can be
used to agnostically navigate latent spaces, latent space exploration,
extrapolation, and even interpolation present challenges [Liu et al.
2022; Maesumi et al. 2023]. Nevertheless, such challenges are not
inherent to latent spaces but only stem from the failure to construct
latent spaces with desired structures through training.

In the end, latent spaces are what they are shaped to be. This plas-
ticity enables latent space physics to take alternative forms to the
fundamental PDEs, such as Hamiltonian formulations. Hamiltonian
mechanics forms the foundation of theoretical mechanics. Instead of
using vectorial properties of individual particles as Newtonian me-
chanics, theoretical mechanics characterizes a system using global
scalar properties of motion, such as kinetic energy and potential
energy. This global view coincides with INRs that encode a system
with a single latent vector. Additionally, the Hamiltonian structure
offers the explicit characterization of conservation laws, geomet-
ric insights through symplectic structures, and the convenience of
canonical transformations and Poisson brackets. Hamiltonian coun-
terparts or mathematical equivalents of many fundamental PDEs
have been derived. By adopting the Hamiltonian structure, latent
space physics can potentially preserve the nature of real physics
while taking simpler forms than the PDEs.

In this work, we advance reduced-order modelling and propose to
simulate fluid dynamics in smooth, coherent, and structured Hamil-
tonian latent spaces for specific scenarios, i.e. parameter spaces
and boundary conditions. Consolidating INRs and neural ordinary
differential equations (ODEs), our neural implicit reduced fluid sim-
ulation (NIRFS) features full spatiotemporal differentiability, low
memory footprint, and arbitrary resolution. While maintaining high
fidelity, NIRFS achieves tens of thousands times speedup, empower-
ing real-time surrogates of traditional methods. As a fundamental
framework for latent space physics, NIRFS holds the potential for
generalization to other physical regimes.

We focus on simulating directly the dynamics of fluid geometries
without evolving velocity and pressure fields. The geometries are
represented as signed distance functions (SDFs) through an INR.
The evolution of fluid geometries is reduced to latent damped Hamil-
tonian trajectories and simulated in the latent space of the INR. An
initial condition encoder (ICE), a latent damped Hamiltonian neural
ODE (DHNODE), and an INR decoder are jointly trained to shape
a Hamiltonian latent space. In many cases, e.g., generative appli-
cations and control tasks, where simulations for specific physical
conditions are not necessary, the ICE can be omitted. We constrain
the latent steady state for realistic temporal extrapolation. We eval-
uate our method by learning and simulating three fluid phenomena
and examine the conservation of mass and momentum. We demon-
strate our methods on the generation of novel simulations and an
inverse design problem involving a fluid control task.
In summary, our contributions include the following:
• The first solution to the major challenge of learning a smooth,
coherent, and structured latent space;

• Latent space physics simulation of a drastically simpler alter-
native formulation to the fundamental PDEs;

• Animating INRs as a simulation primitive;

• An extremely cheap surrogate for differentiable simulation
that is useful for tasks like fluid control;

• Insights into latent space landscape, e.g., convexity and latent
dynamics stiffness.

2 RELATED WORK
We first present previous and recent advances in fluid simulation
that exploit data, reduction, or machine learning to accelerate com-
putation or produce reducedmodels. Then, we discuss relevant work
on topics directly related to the techniques we employ for neural
implicit fluid simulation, specifically, implicit neural representations,
latent space dynamics, and Hamiltonian mechanics.

2.1 Reduced and Data-driven Simulation
While we may formulate the simulation of physical systems in a
general manner that allows its degrees of freedom to take on arbi-
trary values, many states correspond to high energy configurations
or are states that are unlikely to arise under typical scenarios of user
interaction and boundary conditions. Using prescribed interaction
or user input have proven useful in guiding data collection of elas-
tic solids [Barbič and James 2005] and fluids [Treuille et al. 2006],
where principal component analysis can then provide a reduced
set of degrees of freedom. In the absence of data, energy can also
guide the sampling and construction of reduced models [Sharp et al.
2023]. Our work focuses on the case where a set of initial conditions
identifies the subset of configuration space that we wish to model.
We run simulations at sampled initial conditions to produce data.

Indeed, within many scenarios, it is possible to comprehensively
collect and compress trajectory data under expected user interaction
[James and Fatahalian 2003], and likewise refine as new states are
discovered [Stanton et al. 2014]. In more recent work, machine
learning techniques have been applied to the compression problem,
for instance, work of Kim et al. [2019] which proposes a generative
model using a convolutional neural network (CNN) to produce the
velocity fields of a reduced family of fluid simulations. Related to
this is the LSTM-based approach of Wiewel et al. [2019], which does
not simply generate a plausible trajectory but aims to model the
latent space dynamics.
In contrast to building reduced models, data-driven approaches

show promise in accelerating expensive computations of full (unre-
duced) systems. For example, Tompson et al. [2017] train a con-
volutional neural network to solve the pressure projection step
of an incompressible fluid simulation. Similarly, in the context of
smoothed-particle hydrodynamics (SPH) simulations, Ladický et al.
[2015] propose using a regression forest to reduce the cost of com-
puting acceleration vectors of particles.

2.2 Implicit Neural Representations
Though broadly adopted in volumetric data representations, spa-
tial discretization comes with drawbacks. Point-based methods lack
connectivity and fail to represent topology. Mesh-based methods
face challenges in mesh quality for complex geometries and con-
ditions, and in mesh adaptivity for dynamic processes [Pfaff et al.
2021]. Voxel-based methods are often restricted to low resolutions
by computation and memory requirements.
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Without explicit parameterizations, INRs are neural networks
that, through network weights and latent vectors, encode arbitrary
data, such as 3D geometries [Chen and Zhang 2019; Mescheder et al.
2019; Park et al. 2019], radiance fields [Mildenhall et al. 2021], and
physical fields [Chen et al. 2023a,b; Zehnder et al. 2021]. For exam-
ple, an MLP representing SDFs takes as input a latent vector and an
arbitrary query point, and outputs the signed distance [Park et al.
2019]. As such, the neural networks transcend spatial discretization
and empower continuously differentiable neural fields. By adap-
tively allocating network weights based on signal complexity, INRs
avoid aggressive scaling of memory and computation with reso-
lution [Dupont et al. 2022; Takikawa et al. 2021]. Advantages of
INRs have been exploited by many applications, including geometry
processing [Sharp and Jacobson 2022; Yang et al. 2021], scene defor-
mation [Park et al. 2021a,b], and 3D scene and geometry generation
[Chan et al. 2022; Schwarz et al. 2020; Wu and Zheng 2022]. Our
method not only leverages the compact but expressive and flexible
encoding by INRs, but also shapes the encoding and latent space
based on the intrinsic dynamics in fluid features. In this way, we
generate new fluid processes from the latent space.

2.3 Latent Space Dynamics
To capture dynamics in a primal (data) space is to navigate the latent
space of an INR and to observe latent space dynamics. Smooth pri-
mal dynamics does not necessarily parallel smooth latent dynamics.
This inconsistency in smoothness causes friction in data interpola-
tion and extrapolation from a latent space. Methods like variational
autoencoder [Kingma and Welling 2013] and Lipschitz regulariza-
tion [Liu et al. 2022] shape a smooth latent space, so that smooth
latent dynamics yields smooth primal dynamics. Alternatively, an
arbitrary latent space has been re-parameterized to an exploration
space that preserves primal geodesics [Maesumi et al. 2023].
Agnostic to latent space smoothness or dynamics, black boxes,

including LSTMs [Vlachas et al. 2018; Wiewel et al. 2019], GNNs
[Pfaff et al. 2021], and time-lagged autoencoders [Wehmeyer and
Noé 2018], have been employed to jointly learn latent dynamics with
INRs. Otherwise, a structure is enforced to some extent on latent
dynamics and thus on the latent space. A neural ODE parameterizes
an ODE with a neural network and time steps the network with
an ODE solver, continuously transforming states [Chen et al. 2018].
Consequently, a neural ODE defines a continuous vector field and
outputs continuous state trajectories. Fully parameterized neural
ODEs are agnostic to the dynamics but could smooth a latent space
if training is properly handled. Linear Koopman models [Lusch et al.
2018], polynomials [Champion et al. 2019], Hamiltonian neural net-
works (HNNs) [Greydanus et al. 2019], and partially parameterized
neural ODEs [Massaroli et al. 2020] prescribe general structures
in the dynamics. With less flexibility, reduced equations of motion
specify latent dynamics [Fulton et al. 2019]. Balancing structure and
flexibility, our method constructs a smooth, coherent, and structured
latent space with a partially parameterized neural ODE to explicitly
simulate latent space fluid dynamics.

2.4 Hamiltonian Mechanics
The Hamiltonian formulation of Euler equations has been exten-
sively studied [Arnold 2014; Arnold and Khesin 2008; Camassa et al.
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Fig. 2. An ICE, a DHNODE, and an INR decoder are jointly trained. To
achieve training stability and convergence, we keep latent states for each
frame in training simulations in a buffer 𝑧. The ICE is trained tomap physical
initial conditions of each full-length simulation to latent initial conditions
in the buffer 𝑧0. For each scenario, the DHNODE learns an energy function,
a mass matrix, and a damping matrix. The DHNODE is integrated from
uniformly sampled latent states until (after) 𝑡steady. Over a short segment at
the beginning of each integrated trajectory, L𝑂𝐷𝐸 measures the difference
between the rollouts and states in the buffer, and L𝑆𝐷𝐹 measures the
differencz‘e between the decoded and ground truth SDF geometries. For
the states rolled out at or beyond 𝑡steady, Lsteady measures the difference
between the rolled out states and the determined latent steady states.

2014; Ebin and Marsden 1970; Kolev 2007; Miles 1977; Morrison
1998; Olver 1982]. With zero viscosity and thermal conductivity, the
Euler equations are a special case of the Navier-Stokes equations,
describing the motion of an inviscid and incompressible fluid. Due
to viscous dissipation, a viscous fluid, on the other hand, is generally
considered a non-Hamiltonian system and the resulting dynamics
are often not amenable to a straightforward Hamiltonian formula-
tion. However, the Hamiltonian and port-Hamiltonian formulations
of Navier-Stokes equations have been derived [Altmann and Schulze
2017; Haine and Matignon 2021; Jones 2014; Kaufman and Morrison
1982; Morrison 1984; Oseledets 1989; Sanders et al. 2023].

The Hamiltonian structure has been incorporated into neural
networks to regress simple Hamiltonian systems [Greydanus et al.
2019] and to perform classification and function approximation
tasks [Massaroli et al. 2020]. Our method learns latent Hamiltonian
analogs of fluid dynamics.

3 MODEL
NIRFS consists of three parts: an initial condition encoder (ICE) for
physical parameters, a damped Hamiltonian neural ODE (DHNODE)
for latent dynamics, and an INR decoder for geometry represen-
tation. The ICE allows NIRFS to simulate from physical inputs by
mapping initial position/dimension and velocity to latent initial
geometry and geometry momentum with separate MLPs. Option-
ally, the ICE can be omitted when physical inputs are not required
by tasks. The DHNODE provides a means of generating physically
correct shape dynamics in the latent space. The INR decoder maps
latent space to shape space. Figure 1 shows an overview of how
the components work together to produce a fluid simulation, with
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more details in Figure 2. The state at each time step is described by
a latent geometry vector and a latent geometry momentum vector.

3.1 Reduced Representation of Fluid Shapes
We represent fluid geometries as SDFs. Given a location 𝒙 ∈ R3,
the function SDF(𝒙) provides the signed distance to the surface
of a closed geometry, where negative values indicate points inside
the geometry. The zero isosurface of the SDF defines the surface
geometry.
Inspired by DeepSDF [Park et al. 2019], we encode fluid geome-

tries as zero-level sets of an MLP that regresses a collection of SDFs
from point samples. With the MLP conditioned on a latent geometry
vector for each fluid geometry, we employ the MLP as an INR de-
coder to approximate signed distances of a fluid geometry from the
latent vector. That is, given decoder D, we obtain signed distance
approximation D(𝒒, 𝒙) at a query coordinate 𝒙 ∈ R3 for the shape
encoded with latent geometry vector 𝒒 ∈ R𝑑 . We can compute an
explicit representation of the full surface, for instance, with multiple
queries and marching cubes.
We enhance our decoder to accommodate NIRFS:

Gaussian embedding. To encourage the latent space to be locally
smooth and better tolerate ODE integration error, we take inspi-
ration from VAE and use a Gaussian embedding. We structure the
latent space as a cluster of distributions and train the decoder to
learn a local probabilistic mapping. At training time, for a fluid
geometry with associated latent geometry vector 𝒒 the decoder is
provided input 𝒒′ drawn from Gaussian N(𝒒,𝝈2) with mean 𝒒 and
a fixed variance 𝝈 .

Fourier features. NIRFS must accurately reconstruct shapes from
the latent space with high fidelity. However, fluid geometries can
have high spatial frequencies, for instance the crown splash example
in Fig. 1 – these shapes are challenging for MLPs to learn. Fourier
feature mapping of input coordinates is one of the most common
techniques to enable an MLP to learn high frequency functions
[Tancik et al. 2020]. We therefore use Fourier features to help the
decoder learn high-frequency fluid geometries in this example:

𝒙′ (𝒙)=
[
cos(2𝜋𝒃⊺1 𝒙), sin(2𝜋𝒃

⊺
1 𝒙), · · · cos(2𝜋𝒃

⊺
𝑚𝒙), sin(2𝜋𝒃⊺𝑚𝒙)

]⊺
.

Here, 𝒃𝑚 is a frequency vector sampled from a Gaussian distribution.
As indicated by Tancik et al. [2020], the variance of the distribution
needs to be tuned to fit the data. 𝒙′ is then input to the decoder in
place of 𝒙 .

Importance sampling. Because some high-frequency structures
occupy a limited volume and surface area (Fig. 1e top), sampling SDF
training points with equal importance for all structures often results
in imbalanced data, making the high-frequency structures difficult
to learn (Fig. 3a). To balance the samples, we isolate high-frequency
structures so that we can assign them greater weights in sampling.
First, we find points inside the geometry on the medial surface that
have a small medial radius less than a threshold 𝑟 , which we set to
be 1% of the domain size. These medial points will be located near
sharp features or centered within thin sheets of fluid. Samples fall
inside these medial spheres are identified as important for recreating
high-frequency details and given a greater weight 𝑤importance for

(a) (b) (c)

Fig. 3. Geometric defects can arise when an INR (a) is trained without
importance sampling, (b) uses excessive variance in Fourier feature mapping,
or (c) uses insufficient variance in Fourier feature mapping.

drawing samples during training (Sec. 4.1). This sampling approach
ensures that the decoder correctly reconstructs these thin and high
frequency details (Fig. 1, 8, 10, and 9).

3.2 Latent Damped Hamiltonian Neural ODEs
We reduce the computation of a PDE that locally describes the dy-
namics for a fluid phenomenon in physical space to a second-order
neural ODE that globally describes the dynamics of that phenome-
non in latent space. Learning a latent neural ODE not only models
the latent dynamics, but also regularizes the decoder and latent
space, resulting in a smooth, coherent, and well structured latent
space. We use 𝒛 (𝑡) = (𝒒(𝑡),𝒑(𝑡)) to denote the latent phase space
trajectory, where 𝒒 is a latent geometry vector, and 𝒑 is a latent
geometry momentum vector.
Instead of deriving a Hamiltonian formulation explicitly from

the Navier-Stokes equations, we aim to learn a latent Hamiltonian
formulation of fluid geometry dynamics. We embed a Hamiltonian
structure in the neural ODE:

𝑑𝒒

𝑑𝑡
= 𝒎−1𝒑 , (1)

𝑑𝒑

𝑑𝑡
= −𝜸𝒎−1𝒑 − 𝜕𝑉 (𝒒)

𝜕𝒒
, (2)

where 𝑉 (𝒒) is a latent potential energy function that is parame-
terized by an MLP, 𝒎 is a diagonal latent mass matrix, and 𝜸 is a
diagonal latent damping coefficient matrix. The energy function
defines latent space landscape and drives latent dynamics (Sec. 4.4
and 5.1). Including a linear damping term is necessary to capture
energy dissipation and to produce simulations that, in the long term,
go to a steady state in the latent space. Damping also generally
encourages stable integration of the latent dynamics. A single𝑉 (𝒒),
𝒎, and 𝜸 are learned for each scenario.

We exploit the latent space plasticity, using Hamiltonian dynam-
ics for Navier-Stokes systems along with further simplifications,
including Cartesian latent space, linear damping/dissipation, and
diagonal damping and mass matrices. While these simplifications
may not generally be true for fluid systems, we note that the latent
space effectively adapts to these simplifications, which we believe
are acceptable for the purpose of animating fluids such as those in
our results.

Steady state. Damping merely ensures the presence of steady
states in the latent space. Physical and latent steady states should be
reached synchronously. In some cases, e.g., binary droplet collisions,
training data terminate before reaching a steady state. While latent
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Fig. 4. A novel simulation of binary droplet collision is generated by NIRFS.
A latent initial condition is randomly sampled from its domain. Two droplets
of new sizes collide at new angle and speed. The novel simulation reaches a
plausible steady state beyond training time scale.

dynamics can be learned to match the training data, the learned la-
tent space steady state shape can correspond to physically incorrect
geometry (e.g., a non-spherical droplet). In other cases, e.g., crown
splash, we have training data that end with a steady state. Again,
latent dynamics can be learned to match the training data, but with-
out the guarantee that the latent steady state is synchronized with
that of the training data. In this case, the simulated latent space
trajectory will continue to evolve past the end of the training data
with reconstructed shapes that demonstrate non-physical motion.

To resolve this issue, we constrain latent dynamics to chosen
latent steady states at time when physical steady states are reached,
i.e., 𝒛 (𝑡steady) = (𝒒steady, 0). Constraining only the latent state suf-
fices in most cases as a training set should contain near-steady state
data that defines a neighbourhood around the steady state.

4 TRAINING
We jointly train an ICE, a DHNODE, and an INR decoder to simulta-
neously shape a latent space and explore latent dynamics. However,
due to the joint optimization, every update may result in an sub-
stantial variation that hampers training convergence. We propose
an approach that ensures training stability (Fig. 2).

4.1 Data Preparation
We precompute a set of simulations that demonstrate the varying
dynamics under a given scenario. From the simulated fluid geome-
tries, we prepare ground truth SDF samples that each contains a
spatial coordinate 𝒙 and a signed distance value SDF(𝒙) for training.

Simulation sets for three fluid phenomenawere generated - binary
droplet collision (Fig. 4), crown splash (Fig. 1), and slosh in a cylinder
(Fig. 5). High fidelity ground truth simulations were performed with
Blender [Blender Foundation 2021] FLIP Fluids add-on [Guy and
Fassbaender 2022]. Each binary droplet collision simulation took
approximately 8 hours to produce (250×250×150 grid, approximately
873 000 particles); each crown splash, approx. 17h (350×350×200
grid, approx. 2 097 150 particles); each slosh in a cylinder, approx.
6h (92×92×100 grid, approx. 1 075 600 particles). Frames are sampled
from the simulations at high rates. The training set contains, for
binary droplet collision, 25 570 frames from 51 simulations of approx.
500 frames each; for crown splash, 11 700 frames from 39 simulations

Fig. 5. NIRFS learns and simulates the latent dynamics of a weakly damped
fluid slosh in a cylinder, reproducing high-fidelity sloshing orange juice.

of approx. 300 frames each; for slosh in a cylinder, 4 800 frames from
32 simulations of approx. 150 frames each.

For SDF dataset, equal numbers of SDF points are sampled inside
and outside each mesh. Meshes are extracted and normalized to a
unit sphere, hemisphere, and cylinder, respectively. Dense sampling
for each scenario is within the normalized domain, using different
sample counts depending on the complexity of the scenario. For
each mesh in the binary droplet collisions and slosh in a cylinder se-
quences, we uniformly draw 250 000 SDF samples inside and outside
the mesh, yielding a total of 500 000 samples per mesh. For crown
splash, we uniformly draw 375 000, 375 000, and 250 000 samples
inside, outside, and on the mesh, respectively, yielding a total of
one million samples per mesh. The excessive sampling for crown
splash is only to safeguard that sufficient samples are collected for
high-frequency structures.
In training, SDF samples for each geometry are drawn from

the SDF dataset according to a weight 𝑤point. Given signed dis-
tance 𝑠 = SDF(𝒙) for a point 𝒙 , for binary droplet collision and
slosh in a cylinder,𝑤point = ( |𝑠 | + 1)−𝑛 ; for crown splash,𝑤point =
𝑤importance ( |𝑠 | + 1)−𝑛 , where𝑤importance = 128 for samples inside
high-frequency structures and𝑤importance = 1 for all other samples
(Sec. 3.1, Importance sampling). 𝑛 = 10 for all experiments. We did
not fine-tune any sampling hyperparameters.

4.2 Joint Training
Wemaintain a buffer of latent vectors �̃� = (�̃�, �̃�), with one vector for
each frame in ground truth simulations. The buffer directly provides
inputs to the decoder and DHNODE. We can train the ICE to map
physical initial conditions of each full length fluid sequence to latent
space. The output of the ICE is directly input to the DHNODE and
decoder; in this case, the first latent vectors for each fluid sequence
in the buffer is replaced by the output of the ICE.
We conduct training with short fluid sequence segments uni-

formly sampled from the full length sequences. The buffer and
DHNODE is updated based on every frame of each segment. To
fit more segments in one batch, the decoder is updated based on
frames uniformly down-sampled from each segment. In one epoch,
we iterate through the same number of frames of SDF samples as
the total number of frames in a training set.
We asynchronously optimize the ICE, buffer, DHNODE, and de-

coder. The ICE is updated per epoch. Because each full length fluid
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sequence only contains one segment starting from the initial condi-
tion, those segments present in each batch at a low frequency. The
buffer and decoder are updated at each batch/step. The neural ODEs
are updated on the order of every 10 batches/steps. Learning rates
for the decoder and latent vectors, and learning rate schedules are
adapted from DeepSDF [Park et al. 2019]. Initial learning rates for
the DHNODE is around 0.001 and for the ICE 0.0004. Adam opti-
mizer is used [Kingma and Ba 2014]. The training of neural ODE
is considered converged when full trajectories rolled out by neural
ODE match the buffer. Gradually increasing segment length may
assist training.

The latent vector buffer can be initialized to zero or, as in DeepSDF
[Park et al. 2019], random values from a normal distribution with
a small variance and mean of zero. The latent mass matrix was
initialized as I. The initialization of the latent damping matrix is
discussed in Sec. 4.4.

4.3 Loss function
For geometry reconstruction, we formulate a mean squared error
(MSE) loss between decoder outputs and ground truth SDF samples:

LSDF (𝒙) = 𝑤geometry (D(�̃�, 𝒙) − SDF(𝒙))2 , (3)

where 𝑤geometry balances the difficulty of learning each geome-
try. While different scenarios may necessitate different weighting
strategies, the weighting follows the intuition that more complex
geometries require larger weights and we did not fine-tune any
weighting heuristic. For binary droplet collision, 𝑤geometry = 5
from the pre-collision initial geometry to the end of radial expan-
sion [Roisman 2004] and 𝑤geometry = 1 for later geometries. The
conclusion of radial expansion is approximated to be the earliest lo-
cal maximum of the cross-sectional area orthogonal to the collision
axis. For crown splash and slosh in a cylinder,𝑤geometry = ℎ, where
ℎ is the height of each fluid geometry.

During latent dynamics exploration, we roll out a segment using
the DHNODE from a latent state �̃�𝑖 in the buffer. We then compare
this segment of latent states at discrete time points (�̃�𝑖 , 𝒛𝑖+1, ...𝒛𝑖+𝑘 )
to its counterpart in the buffer (�̃�𝑖 , �̃�𝑖+1, ...�̃�𝑖+𝑘 ). We define an MSE
loss between the ODE rollout and the buffer at the evaluated frames:

LODE = ∥�̃� − 𝒛∥2 . (4)

Additionally, we fulfill the steady state constraint (Sec. 3.2) at a time
point 𝑡steady far enough in future for the fluid to be fully at rest. An
MSE loss for the steady state of every trajectory segment is defined,
with a geometry and a geometry momentum vector at 𝑡steady:

Lsteady = 𝜙1∥𝒒(𝑡steady) − 𝒒steady∥2 + 𝜙2∥𝒑(𝑡steady)∥2 ; (5)

or alternatively with multiple geometry vectors beyond 𝑡steady:

Lsteady = 𝜙1

∑𝑁
𝑛=0 ∥𝒒(𝑡steady + 𝑛Δ𝑡) − 𝒒steady∥2

𝑁 + 1 , (6)

where Δ𝑡 should be sufficiently small to avoid aliasing, because
latent dynamics may contain oscillation, and 𝑁Δ𝑡 should be suffi-
ciently large to ensure that the system remains in the steady state.
In many cases including our examples, where a single steady state
exists for a given scenario or boundary condition, we can simply set

Droplets w/o encoder Slosh w/o encoder Crown w/o encoder Crown w/ encoder

Fig. 6. Reduced phase portraits of the first principal component of latent
states reveal physically-structured behavior. For experiments without an
ICE, orange trajectories are reconstructed simulations from the training
set, and grey trajectories are uniformly sampled from the latent spaces to
illustrate the Hamiltonian structure. For the crown splash experiment with
an ICE, uniformly sampled initial positions/offsets of the droplet is color
coded; the size of • scales with uniformly sampled initial speed.

𝒒steady = 0. No significant difference in effect was found between
Equation 5 and 6.

The resulting total loss is a weighted sum of the loss terms:

L = LSDF + 𝜆LODE + Lsteady , (7)

We note that the training is not sensitive to the hyperparameters in
Eq. 5 - 7. We provide our choice of the hyperparameters as a result
of coarse tuning by altering the orders of magnitudes or significant
steps, just to balance the magnitude of loss terms. For example,
SDF values are orders of magnitude different for thin geometries
(e.g., crown slash) and for bulk volumes, (e.g., slosh in a cylinder);
therefore, SDF losses also differ in magnitude, requiring balancing.
For binary droplet collision, 𝜆 = 2 is gradually increased to 𝜆 = 2000,
𝜙1 = 𝜙2 = 10, and 𝑡𝑠𝑡𝑒𝑎𝑑𝑦 = 1200 frames; for crown splash, 𝜆 = 200,
𝜙1 = 10, 𝜙2 = 1, and 𝑡𝑠𝑡𝑒𝑎𝑑𝑦 = 300 frames; for slosh in a cylinder,
𝜆 = 200 is gradually increased to 𝜆 = 20 000, 𝜙1 = 100, 𝜙2 = 10, and
𝑡𝑠𝑡𝑒𝑎𝑑𝑦 = 200 frames. For all scenarios, we use 𝑁 = 10 and Δ𝑡 = 10
frames.

4.4 Neural ODE Stiffness
We consider a dynamics to be stiff when it changes rapidly with
respect to one or more components or directions. Generally, the
stiffness of Hamiltonian dynamics increases with the stiffness (steep-
ness) of the energy function and decreases with themass. For explicit
solvers, high stiffness necessities a large number of small time steps
and thus high cost. Implicit solvers can handle larger time steps for
stiff systems, but also at the expense of higher cost; besides, only a
very limited number of implicit solvers for neural ODEs has been
proposed [Baker et al. 2022]. Neural ODEs may learn a stiff latent
dynamics for an implicit system and become very expensive for
training and inference.
Unlike a fully parameterized black box neural ODE, the explicit

structure of our DHNODE offers intuitive control over the learning
of latent dynamics. The stiffness of DHNODEs can be reduced by
initializing damping coefficients with small values. Large damping
restricts the change of states; to gain complexity in latent dynamics,
a DHNODE learns a stiff energy function to gain forcing and a small
mass to gain acceleration, yielding stiff dynamics. Low damping
allows DHNODEs to have complexity with low stiffness.
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Fig. 7. Overlays of NIRFS reconstructions and ground truth reveal minimum
geometry discrepancy, indicating high fidelity of reconstructed simulation.
The ground truth is shown in grey surface and reconstructions are colored
for signed distance error.

Initializing the damping to 0.00001I achieved, compared to I, a
threefold acceleration in training with reduced number of integra-
tion time steps. We confirmed the decrease of the stiffness of the
energy function with the decrease of the eigenvalues of the Hes-
sian matrix of the energy function 𝑯 (𝑉 (𝒒)). We also confirmed the
decrease of the mass and no side effects.

4.5 Implicit and Temporal Regularization
We generally desire and expect smoothness along and across indi-
vidual fluid geometry sequences in the latent space. The Gaussian
embedding enforces local smoothness, but not smoothness along or
across latent trajectories. LODE explicitly maps temporal distance
among fluid geometries to the latent space, achieving temporarily
coherent and smooth latent trajectories. This temporal constraint
anisotropically regularizes and smooths the latent space along the
integral curves. It can be viewed as similar to applying Lipschitz
style regularization on the decoder, but only for states that are part
of the same trajectory.

During training phase, the neural ODE dynamically explores the
latent space in various directions before converging to the final
latent trajectories. This gradual and structured exploration of the
latent space is driven not by discrete steps, as is the case for vanilla
autodecoders, but rather by continuous-time dynamics, discourag-
ing abrupt or discontinuous changes in the latent space. As a result,
throughout the training process, the latent space and the decoder
are implicitly regularized over the entire latent and primal space.

5 RESULTS AND EVALUATION
We examine the utility, generalizability and latent space properties
of NIRFS with three fluid phenomena. We follow the convention
of reduced-order modelling and train separate models for different
scenarios. We did not fine-tune any model hyperparameters except
for the variance of the frequencies in the Fourier feature mapping.

Compared to DeepSDF [Park et al. 2019], our decoders have lower
complexity, use lower-dimensional latent spaces, and reconstruct
surfaces without facets. We use eight fully connected layers with
less nodes per layer. Notably, because ReLU activation produces
faceted implicit surfaces, we use smooth activation functions for
the decoder. In principle, different scenarios do not require different
activation functions. For crown slash, however, we encountered
“crack” artifacts in all geometries with tanh. Other functions, e.g.,
ReLU, ELU, and leaky-ReLU, yielded no such artifacts.

Fig. 8. NIRFS produces the geometric details of a novel crown splash. A
latent initial condition is obtained by interpolating between two close latent
initial conditions in the training set. The droplet hits the pool at a new
direction and speed.

Our latent Hamiltonian energy functions have two fully con-
nected layers with 128 neurons in each layer and tanh activation.
The ICEs have the same architecture as the energy functions except
for the input layer that depends on the dimensions of the physical
initial condition parameters. The ICE is only demonstrated in the
crown splash scenario.

Binary droplet collision. Two spherical droplets of varying volume
collide at different relative speed and angle in zero gravity. The initial
internal velocity is uniform. All simulations have the same total
volume. The decoder has 256 neurons for each layer and uses tanh
activation. The latent space has 32 dimensions.

Crown splash. A spherical droplet of constant volume and uni-
form internal velocity descends and impacts a shallow pool of zero
internal velocity at different speed and angle. The droplet is offset
from the horizontal centre so that it always lands at the centre of
the pool. Gravity is included. Fourier feature mapping is used with
256 frequencies sampled from N(0, 49). Greater variance produces
high frequency noise on geometry surfaces (Fig. 3b) and smaller
variance leads to fragmental high-frequency structures (Fig. 3c). The
decoder has 256 neurons for each layer except the middle layer of
800 neurons to which the input is concatenated. ELU activation is
used. The latent space has 32 dimensions.

Slosh in a cylinder. In a stationary vertical cylindrical container,
liquid with a leveled surface is initialized with different uniform
internal velocity. Gravity is included. The decoder employs 256
neurons for the first four layers and 128 neurons for the remaining
four layers, all using tanh activation. The latent space has eight
dimensions.

5.1 Latent Space Physics
We visually characterize the trajectories and longitudinal behaviors
of latent space dynamics through phase portraits, revealing stability,
periodicity, and attractors of the Hamiltonian latent space (Fig. 6).
For visualization, the phase portraits are projected to 2D with prin-
cipal component analysis (PCA) by taking the first component of
latent geometry and latent geometry momentum. The 2D phase
portraits show steady states and oscillations or undulations that
parallel those in fluid geometries. Notably, an ICE further structures
the latent space by enforcing a deterministic relationship between
physical initial conditions and latent states (Fig. 6 right-most). With-
out an ICE, multiple latent states may correspond to one physical
initial conditions, and the latent spaces appear to be less structured,
although some correlations between latent and physical states were
observed.

SA Conference Papers ’24, December 03–06, 2024, Tokyo, Japan.



8 • Tao, Puhachov, Nowrouzezahrai, Kry

loss

B
le

nd
er

FL
IP

 F
lu

id
s

Fig. 9. We edit an existing novel simulation by setting a target surface point
at a target time. With an ICE, the initial droplet position and velocity are
optimized for the target. From the new initial condition, NIRFS and Blender
FLIP Fluids produce similar results.

We examined the landscape of the latent spaces through the
eigenvalues of the Hessian of the learned energy function 𝑯 (𝑉 (𝒒)).
Without imposing any constraints, the energy function naturally
learns to be convex around an equilibrium point. This convexitywith
respect to latent fluid geometry ensures that greater deformation
produces greater forcing and that numerical integration in the latent
space is stable for proper time steps. Interestingly, when the energy
function is the squared output of an MLP, the convexity is not
preserved and the energy function is flat in all but one direction
around an equilibrium point.
We note that a large portion of the

variance of position and momentum
can be explained with just a few la-
tent space dimensions, i.e., 90% with
less than 5 components. Analogous
to low-dimension subspace selection
of reduced elastics [Barbič and James
2005], latent space dimensionality re-
lates to expressivity of the reduced
model. Complex geometries benefit
from higher-dimensional latent spaces. We observed no significant
effects when the dimensionality is higher than necessary, e.g., 32
rather than 8 dimensions for slosh in the cylinder.

5.2 Trained Simulation and Novel Simulation
NIRFS integrates the DHNODE in the latent space and decode the
trajectory of implicitly represented fluid shapes. We reconstruct
the trajectory of a simulation in the training set from a learned
latent initial condition 𝒛0 = (𝒒0,𝒑0) (Fig. 5). We observe that the re-
constructed simulations are visually indistinguishable from ground
truth (Fig. 7).
We generate novel simulations not included in the training set

from new latent initial conditions, that can be obtained in different
ways. With an ICE, we simply set a new physical initial condition
(Fig. 1). Otherwise, we can optimizing latent geometry vectors to
match provided initial geometry SDFs and then compute an initial
latent geometry momentum vector. We can also interpolate between

backpropagation

loss

initial target
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Fig. 10. We obtain a targeted novel simulation by editing an existing novel
simulation. Without an ICE, we optimize the latent initial condition so that
the fluid reaches a target surface point at a target time.

known latent initial conditions that are close in the physical param-
eter space (Fig. 8). Another strategy is to sample within the the
convex hull of a 2D embedding of latent initial conditions of the
training set (Fig. 4). Novel simulations produced in these manners
are physically realistic.

5.3 Fluid Control
Fluid trajectory editing tasks is another case where we can create
novel simulations that satisfy a desired objective. Empowered by
the full differentiability of NIRFS, we solve an inverse fluid design
as an optimization problem. The design variable is the physical
initial condition (Fig. 9), or if an ICE is not applicable, the latent
initial condition 𝒛0 = (𝒒0,𝒑0) (Fig. 10). We edit a given crown splash
trajectory by setting a target point for the fluid surface to reach at a
target time. We then optimize the design variable through gradient
descent on the squared signed distance (squared decoder output) at
the target point and time. Optimization cost varies by task but is
generally less than five minutes and as low as a few seconds. From
the optimized physical initial condition, NIRFS and Blender FLIP
Fluids produce similar results (Fig. 9).

5.4 Conservation of Volume and Momentum
Our incompressible fluid simulations do not feature sources nor
sinks and thus volume should be preserved along all trajectories in
all of our simulations. Furthermore, in the case of binary droplet
collisions, we also expect the center of mass to be constant (i.e., a
conservation of linear momentum).
Figure 11 (left) shows volume conservation for training data,

reconstructions, and novel trajeoctires. For the ground truth and
reconstruction, we compute the ratio of the volume of each fluid
geometry to the initial volume of the ground truth simulation. For
novel simulation, we compute the ratio of the volume of each fluid
geometry to the initial volume of the novel simulation.

Figure 11 (right) shows centre of mass trajectories for the binary
droplet collision scenario. We reset the origin of each ground truth
geometry to its center of mass during normalization (Section 4.1).
With geometries normalized to a unit sphere, these deviations in the
center of mass position is very small, i.e., below 0.25% the domain
size.
With no direct constraints on either volume or center of mass

in the loss function, the conservation of the physical properties de-
pends on the quality of INRs. Deviation from the conserved quantity
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Table 1. NIRFS offers a significant speedup compared to Blender FLIP Fluids. + denotes latent trajectory integration; ++ denotes latent trajectory integration
and SDF evaluation; +++ denotes latent trajectory integration, SDF evaluation, and marching cubes.

Number SDF grid NIRFS (s) FLIP Fluids Speedup (×)
of frames resolution + ++ +++ (103 s) + ++ +++

Droplets 500 2563
0.12

500.12 625.12 28.8 2.4 × 105 58 46
Crown 300 5123 1350.12 1980.12 61.2 5.1 × 105 45 31
Slosh 150 5123 675.12 990.12 21.6 1.8 × 105 32 22

originates from geometry representation error. The conservation is
well maintained by our method, with deviation concentrated at the
beginning of simulations where geometries are more complicated.

5.5 Cost
NIRFS demonstrates a substantial speed advantage over conven-
tional fluid simulation (Table 1). The cost arises from latent trajec-
tory integration, SDF evaluation, and surface extraction.
We use the fifth-order Runge-Kutta method of Tsitouras [2011]

with adaptive time step for latent trajectory integration. Solution
at specified time instants is evaluated through interpolation. All
experiments are implemented with PyTorch [Paszke et al. 2019]
and torchode [Lienen and Günnemann 2022]. The approximate cost
per time step is 2.2 milliseconds on an AMD EPYC 7532 32-core
CPU and from 9.5 to 19.2 milliseconds on an NVIDIA A100 GPU.
Respectively, the approximate cost per trajectory is 0.12 ± 0.05 and
0.55 ± 0.01 seconds for all three scenarios. Massive parallelization
of the integration of trajectories can be done on a GPU with almost
no additional cost.
INRs are continuous and support arbitrary grid resolution. The

cost for the decoder to evaluate on a 1283 grid is approximately
0.147 seconds on an NVIDIA A100 GPU. We evaluated SDF for
demonstrations on 2563 (Fig. 4) and 5123 (Fig. 1 and 5) grids, taking
1s and 4.5s per frame. While we used marching cubes to extract a
surface, which takes 0.25s and 2.1s per frame, we can avoid meshes
and render the INRs with sphere tracing.

6 DISCUSSION
NIRFS admits a number of design decisions and is demonstrated
through specific scenarios under varying initial conditions. First, we
discuss ablation experiments to further justify the design decisions
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Fig. 11. NIRFS conserves volume and momentum throughout binary droplet
collisions. Volume is conserved comparably to the ground truth. Center of
mass exhibits limited deviation from the origin of the unit sphere.

presented in Sections 3 and 4. Subsequently, we discuss the scope
of generalization for NIRFS.

We validate the importance of the an explicit Hamiltonian model
by replacing it with a fully MLP-parameterized neural ODE. This
alternative learns smooth latent dynamics without an embedded
structure: latent trajectories do not exhibit steady states, oscillations,
nor undulations that parallel fluid dynamics. Notably, the lack of a
latent steady state results in free extrapolation of latent states (and
thus geometries) beyond the training regime.

We experimentally tested the shortcomings of decoupled training.
First, we remove the latent neural ODE entirely, training only a de-
coder. After densely sampling geometries from continuous geomet-
ric sequences, latent trajectories from different sequences displayed
varying degrees of smoothness. Some trajectories were piecewise
smooth (i.e., with intermittent irregularities), while others lacked
any (even partial) smoothness. Here, we observed that neither Gauss-
ian embeddings nor Lipschitz regularization [Liu et al. 2022] signifi-
cantly impacted the smoothness of latent trajectories. Subsequently,
we attempted to train a Hamiltonian and a fully parameterized neu-
ral ODE to model the latent trajectories for the (separately trained)
decoder; however, we were unable to successfully train such amodel:
discontinuities in the latent trajectories destabilize the neural ODE
during training, due to the unconstrained structure of these latent
trajectories likely belonging to function classes ill-suited to neural
ODE representation, i.e., those functions with discontinuities and
intersections [Dupont et al. 2019].
We use a Gaussian embedding to encourage a locally smooth

latent space that better tolerates integration error. Training the de-
coder without a Gaussian embedding can result in a decoder that
maps significantly different geometries from nearby latent vectors.
Consequently, the ablation of Gaussian embedding introduces in-
stability with respect to ODE integration error.

The generalizability of NIRFS is demonstrated across initial con-
ditions for specific scenarios through novel simulations produced
in different ways (Sec. 5.2 and 5.3). We note that the demonstra-
tions used small numbers of simulations for training, i.e., 51 for
binary droplet collision, 39 for crown splash, and 32 for slosh in a
cylinder. Future work can explore larger physical parameter spaces
and boundary conditions to enhance generalization, with more data
collection and larger networks. Scenarios involving other materials
(e.g., smoke), interactions, and moving boundaries are all excellent
avenues for future work.

Generalizing over simulation resolution is also feasible by training
with data of different simulation resolutions. However, because the
cost of NIRFS is unaffected by training simulation resolution, it is
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reasonable to train models on accurate simulations of a fixed high
resolution.

While we only demonstrated INR for SDF and Hamiltonian latent
dynamics, we note that the latent space is agnostic to the type
of physical dynamics and data (e.g., SDFs, radiance fields, density
maps, occupancy fields, etc.), and that the latent dynamics can have
formulations other than Hamiltonian. The value here is that latent
space physics can have alternative forms to the physical PDE.

Simplifications in the latent Hamiltonian model, including Carte-
sian latent space, linear damping/dissipation, and diagonal damping
and mass matrices, trade physical fidelity for reduced complexity.
Future studies may seek if a more complex physical system requires
a more faithful latent space model. The damping term emulates
viscous dissipation. Inviscid fluid dynamics without steady state can
be explored in the future by, e.g., removing the damping term and
adjusting learning strategy without the steady state loss.

7 CONCLUSION
Learning reduced neural-implicit representations combined with la-
tent space neural ordinary differential equations is a viable technique
for efficiently modeling the dynamics of costly fluid simulations.
Our results show that the learned latent space fluid dynamics is
smooth and stable, and conserves volume and momentum. Produc-
ing fluid trajectories with NIRFS is many orders of magnitude faster
than computing a full simulation. Just the same, we acknowledge
that there are opportunities to make NIRFS computation even faster
with smaller latent space, and smaller networks.

We explored single-fluid settings but believe NIRFS can be applied
to scenes with multi-scale fluid interactions, such as multi-droplet
interactions that merge and split. As a surrogate model, NIRFS can
be applied to control applications (e.g., what external force moves a
bottle to a desired location without spilling its juice). Here, we are
excited to explore how the core NIRFS concepts can be applied to
other physical systems, such as elastic solids or thin shells.
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